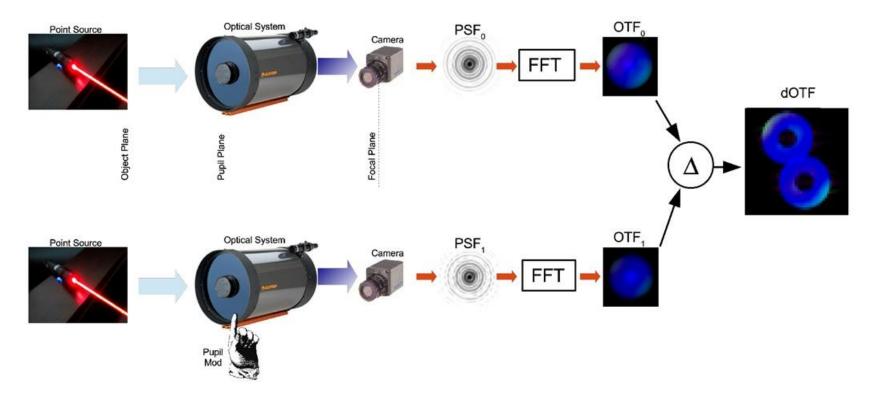
Speaker: Alexander Rodack

Application and Enhancement of the dOTF

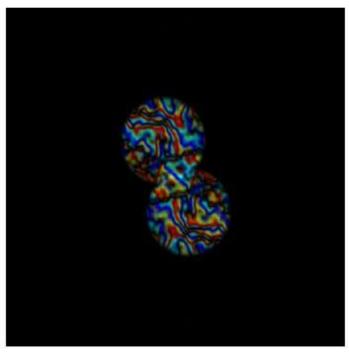
Outline

- A Brief Review of the dOTF
- Adaptive Optics Self-Calibration
- Using Deconvolution to Improve Results


The dOTF

The dOTF

 Induced change in pupil mask – change in pupil field – change in OTF: 'differential' OTF


J. L. Codona, "Differential optical transfer function wavefront sensing", Opt. Eng., 52(9), 2013.

dOTF Wavefront Sensing

- The dOTF gives a measurement of the complex field in the pupil as seen by the Science Camera
- Wavefront sensor in nonphoton limited systems
 - Calibration
 - Shop Testing

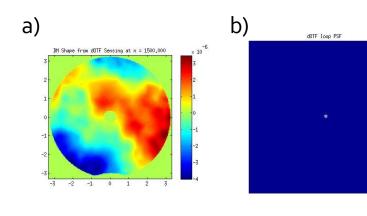
dOTF Example

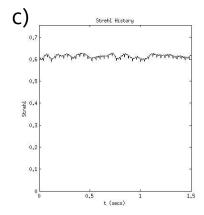
The dOTF examining the MMT Pupil with a Kolmogorov Phase Screen

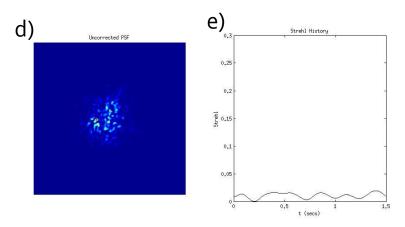
Adaptive Optics Self-Calibration

Adaptive Optics Self - Calibration

- PSF Self-Calibration
 - Closed-loop servo uses dOTF measurements to update DM actuation
 - "Flattens" DM
 - Corrects for non-common-path aberrations
- Intentional addition of defocus


Methods for AO Self-Calibration



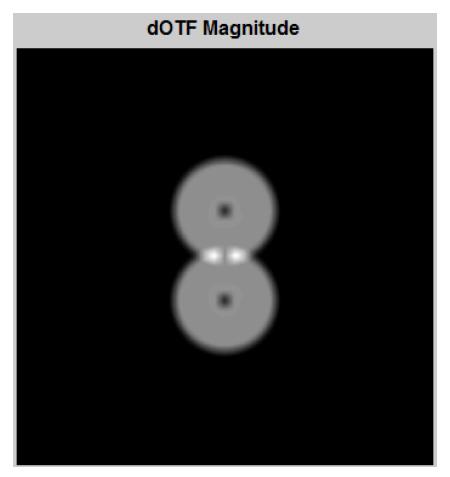

- Poke an edge actuator for a pupil modification
- Take 2 (or 3) pictures and compute the dOTF
- Mask off overlap region
- Read out displacements and slopes at segment/actuator positions directly from the phase measurements of the dOTF
- Replace directly measured phase with Reconstructor Matrix

Numerical Simulation Result

- a) DM Shape Calculated w/ dOTF
- b) Corrected PSF
- c) Strehl Ratio over time (corrected)
- d) Uncorrected PSF
- e) Strehl Ratio over time (uncorrected)

Using Deconvolution to Enhance the Loop

Deconvolution



- The dOTF field can be blurred:
 - Area caused by the pupil modification
 - Radial caused by the bandwidth
- We will focus on correcting the Area blurring
 - Algorithms in development for both

Area Deconvolution

- Method for Area Deconvolution:
 - Mask overlapping parts of the dOTF
 - Fourier Transform back into image space
 - Construct a Wiener filter to recover higherresolution measurement

dOTF blurred by pupil blocker size

Initial Simulation

Simulation done using SVD to recover high-resolution information. Test 2 done with a higher number of modes included

Next Steps

- Verify self-calibration on the testbed
 - Different bandwidths
 - Varying amounts of collected photons
- Reconstructor Matrix
- Explore Deconvolution algorithms/techniques
- Apply Deconvolution to the Self-Calibration loop
 - Once this is done, further experiments can be done with a higher degree of accuracy